13,500 research outputs found

    Coupled KdV equations derived from atmospherical dynamics

    Full text link
    Some types of coupled Korteweg de-Vries (KdV) equations are derived from an atmospheric dynamical system. In the derivation procedure, an unreasonable yy-average trick (which is usually adopted in literature) is removed. The derived models are classified via Painlev\'e test. Three types of τ\tau-function solutions and multiple soliton solutions of the models are explicitly given by means of the exact solutions of the usual KdV equation. It is also interesting that for a non-Painlev\'e integrable coupled KdV system there may be multiple soliton solutions.Comment: 19 pages, 2 figure

    An Imaging and Spectral Study of Ten X-Ray Filaments around the Galactic Center

    Full text link
    We report the detection of 10 new X-ray filaments using the data from the {\sl Chandra} X-ray satellite for the inner 66^{\prime} (15\sim 15 parsec) around the Galactic center (GC). All these X-ray filaments are characterized by non-thermal energy spectra, and most of them have point-like features at their heads that point inward. Fitted with the simple absorbed power-law model, the measured X-ray flux from an individual filament in the 2-10 keV band is 2.8×1014\sim 2.8\times10^{-14} to 101310^{-13} ergs cm2^{-2} s1^{-1} and the absorption-corrected X-ray luminosity is 10321033\sim 10^{32}-10^{33} ergs s1^{-1} at a presumed distance of 8 kpc to the GC. We speculate the origin(s) of these filaments by morphologies and by comparing their X-ray images with the corresponding radio and infrared images. On the basis of combined information available, we suspect that these X-ray filaments might be pulsar wind nebulae (PWNe) associated with pulsars of age 1033×10510^3 \sim 3\times 10^5 yr. The fact that most of the filament tails point outward may further suggest a high velocity wind blowing away form the GC.Comment: 29 pages with 7 figures and 3 pages included. Accepted to Ap

    Statistical switching kinetics in ferroelectrics

    Full text link
    By assuming a more realistic nucleation and polarization reversal scenario we build a new statistical switching model for ferroelectrics, which is different from either the Kolmogorov-Avrami-Ishibashi (KAI) model or the Nucleation-Limited-Switching (NLS) model. After incorporating a time-dependent depolarization field this model gives a good description about the retardation behavior in polycrystalline thin films at medium or low fields, which can not be described by the traditional KAI model. This model predicts correctly n=1 for polycrystalline thin films at high Eappl or ceramic bulks in the ideal case

    High-Current Field Emission from an Atomic Quantum Wire

    Full text link
    Linear chains of carbon atoms have been proposed as the electron emitting structures of open tip carbon nanotubes subject to an electric field. To better understand the implications of the results of Smalley and collaborators, the electromagnetic response of linear carbon chains to both static and dynamics fields have been studied, making use of ab-initio methods. It is found that the associated emission currents, plotted as a function of the bias potential, follow Fowler-Nordheim intensity-voltage curves typical of the field emission of metallic tips. Under standard bias conditions, linear carbon chains of one nanometer of length are expected to deliver currents of the order of one microampere. These systems behave, furthermore, as conducting needles in photoabsorption processes. Linear carbon chains are thus likely to constitute the ultimate atomic-scale realization of metallic wires.Comment: 10 pages, 4 figures, RevTe

    Envelope Expansion with Core Collapse. III. Similarity Isothermal Shocks in a Magnetofluid

    Full text link
    We explore MHD solutions for envelope expansions with core collapse (EECC) with isothermal MHD shocks in a quasi-spherical symmetry and outline potential astrophysical applications of such magnetized shock flows. MHD shock solutions are classified into three classes according to the downstream characteristics near the core. Class I solutions are those characterized by free-fall collapses towards the core downstream of an MHD shock, while Class II solutions are those characterized by Larson-Penston (LP) type near the core downstream of an MHD shock. Class III solutions are novel, sharing both features of Class I and II solutions with the presence of a sufficiently strong magnetic field as a prerequisite. Various MHD processes may occur within the regime of these isothermal MHD shock similarity solutions, such as sub-magnetosonic oscillations, free-fall core collapses, radial contractions and expansions. We can also construct families of twin MHD shock solutions as well as an `isothermal MHD shock' separating two magnetofluid regions of two different yet constant temperatures. The versatile behaviours of such MHD shock solutions may be utilized to model a wide range of astrophysical problems, including star formation in magnetized molecular clouds, MHD link between the asymptotic giant branch phase to the proto-planetary nebula phase with a hot central magnetized white dwarf, relativistic MHD pulsar winds in supernova remnants, radio afterglows of soft gamma-ray repeaters and so forth.Comment: 21 pages, 33 figures, accepted by MNRA

    Glutathione and Glutaredoxin in Redox Regulation and Cell Signaling of the Lens

    Get PDF
    The ocular lens has a very high content of the antioxidant glutathione (GSH) and the enzymes that can recycle its oxidized form, glutathione disulfide (GSSG), for further use. It can be synthesized in the lens and, in part, transported from the neighboring anterior aqueous humor and posterior vitreous body. GSH is known to protect the thiols of the structural lens crystallin proteins from oxidation by reactive oxygen species (ROS) so the lens can maintain its transparency for proper visual function. Age-related lens opacity or senile cataract is the major visual impairment in the general population, and its cause is closely associated with aging and a constant exposure to environmental oxidative stress, such as ultraviolet light and the metabolic end product, H2O2. The mechanism for senile cataractogenesis has been hypothesized as the results of oxidation-induced protein-thiol mixed disulfide formation, such as protein-S-S-glutathione and protein-S-S-cysteine mixed disulfides, which if not reduced in time, can change the protein conformation to allow cascading modifications of various kinds leading to protein–protein aggregation and insolubilization. The consequence of such changes in lens structural proteins is lens opacity. Besides GSH, the lens has several antioxidation defense enzymes that can repair oxidation damage. One of the specific redox regulating enzymes that has been recently identified is thioltransferase (glutaredoxin 1), which works in concert with GSH, to reduce the oxidative stress as well as to regulate thiol/disulfide redox balance by preventing protein-thiol mixed disulfide accumulation in the lens. This oxidation-resistant and inducible enzyme has multiple physiological functions. In addition to protecting structural proteins and metabolic enzymes, it is able to regulate the redox signaling of the cells during growth factorstimulated cell proliferation and other cellular functions. This review article focuses on describing the redox regulating functions of GSH and the thioltransferase enzyme in the ocular lens

    The preparation, characterization, and pharmacokinetic studies of chitosan nanoparticles loaded with paclitaxel/dimethyl-β-cyclodextrin inclusion complexes.

    Get PDF
    A novel biocompatible and biodegradable drug-delivery nanoparticle (NP) has been developed to minimize the severe side effects of the poorly water-soluble anticancer drug paclitaxel (PTX) for clinical use. PTX was loaded into the hydrophobic cavity of a hydrophilic cyclodextrin derivative, heptakis (2,6-di-O-methyl)-β-cyclodextrin (DM-β-CD), using an aqueous solution-stirring method followed by lyophilization. The resulting PTX/DM-β-CD inclusion complex dramatically enhanced the solubility of PTX in water and was directly incorporated into chitosan (CS) to form NPs (with a size of 323.9–407.8 nm in diameter) using an ionic gelation method. The formed NPs had a zeta potential of +15.9–23.3 mV and showed high colloidal stability. With the same weight ratio of PTX to CS of 0.7, the loading efficiency of the PTX/DM-β-CD inclusion complex-loaded CS NPs was 30.3-fold higher than that of the PTX-loaded CS NPs. Moreover, it is notable that PTX was released from the DM-β-CD/CS NPs in a sustained-release manner. The pharmacokinetic studies revealed that, compared with reference formulation (Taxol(®)), the PTX/DM-β-CD inclusion complex-loaded CS NPs exhibited a significant increase in AUC(0→24h) (the area under the plasma drug concentration–time curve over the period of 24 hours) and mean residence time by 2.7-fold and 1.4-fold, respectively. Therefore, the novel drug/DM-β-CD inclusion complex-loaded CS NPs have promising applications for the significantly improved delivery and controlled release of the poorly water-soluble drug PTX or its derivatives, thus possibly leading to enhanced therapeutic efficacy and less severe side effects

    Artificial Gauge Field and Quantum Spin Hall States in a Conventional Two-dimensional Electron Gas

    Full text link
    Based on the Born-Oppemheimer approximation, we divide total electron Hamiltonian in a spinorbit coupled system into slow orbital motion and fast interband transition process. We find that the fast motion induces a gauge field on slow orbital motion, perpendicular to electron momentum, inducing a topological phase. From this general designing principle, we present a theory for generating artificial gauge field and topological phase in a conventional two-dimensional electron gas embedded in parabolically graded GaAs/Inx_{x}Ga1x_{1-x}As/GaAs quantum wells with antidot lattices. By tuning the etching depth and period of antidot lattices, the band folding caused by superimposed potential leads to formation of minibands and band inversions between the neighboring subbands. The intersubband spin-orbit interaction opens considerably large nontrivial minigaps and leads to many pairs of helical edge states in these gaps.Comment: 9 pages and 4 figure
    corecore